
HAL Contract and HIQ Implementation

Version 1.0 — HIQ v1.0.0

Daniel Hinderink

February 2026

The Contract

"Don't be sorry HAL, I am sure you can do that""Don't be sorry HAL, I am sure you can do that"
— Dave

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 1/20

Contents

Abstract 3

1. Introduction 3

2. The Fragmentation Problem 4

3. The HAL Contract 5

4. Core Interfaces 6

5. Implementation Guide 9

6. Case Study: HIQ 11

7. Benefits & Trade-offs 12

8. Conclusion 13

References 14

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 2/20

Abstract

The quantum computing landscape is fragmented across multiple hardware vendors, each with

proprietary SDKs and APIs. This fragmentation creates vendor lock-in, increases development
costs, and slows the adoption of quantum computing in production environments. We present

the HAL Contract, a vendor-neutral interface specification that enables quantum algorithms to
run on any compliant backend without modification. The contract defines six core interfaces:

Backend, Capabilities, Job, Result, Topology, and GateSet. We demonstrate the practical
applicability of this approach through HIQ v1.0, a Rust-native reference implementation that

supports IQM, IBM Quantum, QDMI (Munich Quantum Software Stack), and local simulation
backends. HIQ also provides Qrisp-inspired quantum types, automatic uncomputation, and first-

class HPC integration with both SLURM and PBS schedulers. The HAL Contract enables true
hardware portability while maintaining the flexibility needed for backend-specific optimizations.

1. Introduction

Quantum computing has transitioned from theoretical curiosity to practical reality. Organizations
worldwide are deploying quantum processors for research, optimization, and machine learning

workloads. However, the current ecosystem suffers from a fundamental problem: each quantum
hardware vendor provides its own SDK, API, and execution model.

A researcher developing a variational quantum eigensolver (VQE) algorithm faces a difficult choice.

Should they target IBM's Qiskit Runtime? IQM's native API? Google's Cirq? Each choice locks them into a
specific ecosystem, making it expensive to switch providers or leverage multiple backends.

This whitepaper introduces the HAL Contract—a Hardware Abstraction Layer specification designed to
solve this fragmentation. Inspired by successful abstraction patterns in classical computing (JDBC for
databases, POSIX for operating systems), the HAL Contract provides a stable interface that decouples

quantum algorithms from their execution environment.

1.1 Goals

Portability: Write quantum code once, run it on any compliant backend

Testability: Develop against simulators, deploy to real hardware

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 3/20

HPC Integration: First-class support for job schedulers (SLURM, PBS)

Extensibility: Allow backend-specific features without breaking compatibility

1.2 Non-Goals

The HAL Contract intentionally does not address:

Circuit representation or gate definitions (use OpenQASM 3.0)

High-level algorithm frameworks (use Qiskit, Cirq, etc.)

Compilation and optimization passes (implementation-specific)

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 4/20

2. The Fragmentation Problem

Today's quantum computing ecosystem resembles the database landscape of the 1980s—before SQL and
JDBC established common interfaces. Each vendor's solution is an island, requiring specialized

knowledge and tooling.

2.1 Current State

Vendor SDK API Style Job Model

IBM Quantum Qiskit REST + Primitives Qiskit Runtime

IQM IQM Client REST Resonance API

Google Cirq gRPC Quantum Engine

Rigetti pyQuil REST QCS

Amazon Braket SDK AWS API Braket Tasks

2.2 Consequences

Vendor Lock-in. Once an organization commits to a specific SDK, switching costs are substantial. Code
must be rewritten, workflows redesigned, and teams retrained.

Duplicated Effort. Research groups implement the same algorithms multiple times for different

backends, wasting resources that could advance quantum computing.

Limited Benchmarking. Comparing quantum hardware requires running identical workloads, which is

impossible when each backend speaks a different language.

HPC Integration Challenges. High-performance computing centers with SLURM or PBS schedulers must
build custom integrations for each quantum backend they support.

2.3 The Cost of Fragmentation

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 5/20

Consider a pharmaceutical company running quantum chemistry simulations. They start with IBM
Quantum for initial development, but IQM offers better gate fidelities for their specific workload. Without

a hardware abstraction layer, migration requires:

Rewriting all circuit submission code

Adapting job status polling and result retrieval

Updating error handling for different failure modes

Modifying CI/CD pipelines and monitoring

With the HAL Contract, migration is a configuration change.

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 6/20

3. The HAL Contract

The HAL Contract is a minimal, stable interface specification that quantum backends implement to
achieve interoperability. It follows three design principles:

3.1 Design Principles

Principle 1: Minimal Surface Area. The contract defines only what is necessary for portability. Backend-

specific features are accessible through extension points, not modifications to core interfaces.

Principle 2: Async-First. Quantum job execution is inherently asynchronous. Jobs are submitted, polled,

and retrieved—the contract embraces this model rather than hiding it.

Principle 3: Capability Discovery. Backends advertise their capabilities (qubit count, gate set, topology)
through a standard interface. Applications can query and adapt at runtime.

3.2 Architecture Overview

┌───┐
│ Application Layer │
│ (Algorithms, Experiments, Workflows) │
└─────────────────────────────┬───────────────────────────────┘

 │
┌─────────────────────────────▼───────────────────────────────┐
│ HAL Contract │
│ ┌──────────┐ ┌──────────┐ ┌─────┐ ┌────────┐ ┌──────────┐ │
│ │ Backend │ │Capability│ │ Job │ │ Result │ │ Topology │ │
│ └──────────┘ └──────────┘ └─────┘ └────────┘ └──────────┘ │
└─────────────────────────────┬───────────────────────────────┘

 │
 ┌─────────────────────┼─────────────────────┐
 ▼ ▼ ▼

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ IQM Adapter │ │ IBM Adapter │ │ Simulator │
└───────────────┘ └───────────────┘ └───────────────┘

Figure 1: HAL Contract Architecture

3.3 Contract Versioning

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 7/20

The HAL Contract follows semantic versioning. Minor versions add optional capabilities; major versions
may introduce breaking changes. Backends declare which contract version they implement.

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 8/20

4. Core Interfaces

The HAL Contract defines six core interfaces. Together, they provide everything needed to submit
quantum circuits, monitor execution, and retrieve results.

4.1 Backend

The Backend trait is the primary interface for quantum execution. It defines methods for job submission,

status checking, result retrieval, and cancellation.

trait Backend: Send + Sync {
 /// Get the name of this backend
 fn name(&self) -> &str;

 /// Get the capabilities of this backend
 async fn capabilities(&self) -> HalResult<Capabilities>;

 /// Check if the backend is available
 async fn is_available(&self) -> HalResult<bool>;

 /// Submit a circuit for execution
 async fn submit(&self, circuit: &Circuit, shots: u32) -> HalResult<JobId>;

 /// Get the status of a job
 async fn status(&self, job_id: &JobId) -> HalResult<JobStatus>;

 /// Get the result of a completed job
 async fn result(&self, job_id: &JobId) -> HalResult<ExecutionResult>;

 /// Cancel a running job
 async fn cancel(&self, job_id: &JobId) -> HalResult<()>;

 /// Wait for a job to complete (default implementation provided)
 async fn wait(&self, job_id: &JobId) -> HalResult<ExecutionResult>;
}

4.2 Capabilities

The Capabilities structure describes what a backend can do. Applications use this information to

select appropriate backends and validate circuits before submission.

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 9/20

struct Capabilities {
 name: String, // Backend identifier
 num_qubits: u32, // Available qubits
 gate_set: GateSet, // Supported gates
 topology: Topology, // Qubit connectivity
 max_shots: u32, // Maximum shots per job
 is_simulator: bool, // Hardware or simulation
 features: Vec<String>, // Optional features
}

4.3 Job and JobStatus

Jobs progress through a defined lifecycle: Queued → Running → Completed/Failed/Cancelled . The

JobStatus enum captures these states.

enum JobStatus {
 Queued, // Waiting in queue
 Running, // Currently executing
 Completed, // Finished successfully
 Failed(String), // Failed with error message
 Cancelled, // Cancelled by user
}

4.4 ExecutionResult

Results contain measurement counts, execution metadata, and optional backend-specific information.

struct ExecutionResult {
 counts: Counts, // Measurement outcomes
 shots: u32, // Shots executed
 execution_time_ms: Option<u64>, // Execution duration
 metadata: Value, // Backend-specific data
}

4.5 Topology

Qubit topology defines which pairs of qubits can interact directly. This is essential for circuit routing and
optimization.

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 10/20

struct Topology {
 kind: TopologyKind, // Linear, Star, Grid, Custom
 edges: Vec<(u32, u32)>, // Connected qubit pairs
}

enum TopologyKind {
 FullyConnected, // All-to-all connectivity
 Linear, // Chain: 0-1-2-3-...
 Star, // Center connected to all
 Grid { rows, cols }, // 2D lattice
 Custom, // Arbitrary connectivity
}

4.6 GateSet

The gate set defines native operations supported by the hardware. Circuits using non-native gates must
be transpiled before execution.

struct GateSet {
 single_qubit: Vec<String>, // e.g., ["rx", "ry", "rz"]
 two_qubit: Vec<String>, // e.g., ["cz", "cx"]
 native: Vec<String>, // Preferred gates for this backend
}

Backend Native Single-Qubit Native Two-Qubit

IQM PRX (phased rotation) CZ

IBM RZ, SX, X CX (CNOT)

Simulator Universal Universal

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 11/20

5. Implementation Guide

Implementing the HAL Contract for a new backend requires implementing the Backend trait and
mapping vendor-specific APIs to the standard interface.

5.1 Minimal Implementation

A minimal implementation must provide all required methods. Here's a skeleton for a hypothetical "Acme

Quantum" backend:

struct AcmeBackend {
 client: AcmeClient,
 config: BackendConfig,
}

#[async_trait]
impl Backend for AcmeBackend {
 fn name(&self) -> &str {
 "acme-quantum"
 }

 async fn capabilities(&self) -> HalResult<Capabilities> {
 let info = self.client.get_device_info().await?;
 Ok(Capabilities {
 name: info.name,
 num_qubits: info.qubit_count,
 gate_set: GateSet::from_acme(&info.gates),
 topology: Topology::from_acme(&info.connectivity),
 max_shots: info.max_shots,
 is_simulator: false,
 features: vec![],
 })
 }

 async fn submit(&self, circuit: &Circuit, shots: u32) -> HalResult<JobId> {
 let acme_circuit = convert_to_acme_format(circuit)?;
 let job = self.client.submit(acme_circuit, shots).await?;
 Ok(JobId::new(job.id))
 }

 // ... remaining methods
}

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 12/20

5.2 Error Handling

The HAL Contract defines standard error types that backends must map their errors to:

enum HalError {
 NotAvailable(String), // Backend offline
 InvalidCircuit(String), // Circuit validation failed
 JobFailed(String), // Execution error
 JobCancelled, // Job was cancelled
 Timeout(String), // Operation timed out
 Authentication(String), // Auth failure
 RateLimited, // Too many requests
 Internal(String), // Unexpected error
}

5.3 Testing Compliance

The HAL Contract provides a compliance test suite that validates implementations:

// Run compliance tests against your backend
#[test]
async fn test_hal_compliance() {
 let backend = AcmeBackend::new(test_config());
 hal_compliance::run_all_tests(&backend).await;
}

The test suite verifies:

Capability reporting is consistent

Job lifecycle follows the specified state machine

Error types are properly mapped

Results are correctly formatted

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 13/20

6. Case Study: HIQ

HIQ is the reference implementation of the HAL Contract. Built in Rust for performance, it provides
adapters for multiple quantum backends and integrates with HPC job schedulers.

6.1 Architecture

┌───┐
│ Python SDK Layer │
│ (Qiskit, Qrisp, user scripts) │
└──────────────────────────┬──┘

 │ PyO3 bindings
┌──────────────────────────▼──┐
│ hiq-python (PyO3) │
│ Circuit building, compilation, QASM export │
└──────────────────────────┬──┘

 │
┌──────────────────────────▼──┐
│ hiq-core (Rust) │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌───────────┐ │
│ │ hiq-ir │ │ hiq-compile│ │ hiq-hal │ │ hiq-sched │ │
│ │ │ │ │ │ │ │ │ │
│ │ Circuit IR │ │ Pass mgr │ │ Backend │ │ SLURM/PBS │ │
│ │ QASM3 parse│ │ Optimizer │ │ abstraction│ │ Workflows │ │
│ └────────────┘ └────────────┘ └────────────┘ └───────────┘ │
└───┘

Figure 2: HIQ Architecture

6.2 Supported Backends

Backend Type Authentication Notes

Simulator Local None Statevector, up to ~20 qubits

IQM Resonance Cloud API Token Full Resonance API support

IQM LUMI HPC OIDC CSC Finland integration

IQM LRZ HPC OIDC LRZ Germany integration

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 14/20

Backend Type Authentication Notes

IBM Quantum Cloud API Token Qiskit Runtime primitives

QDMI (MQSS) HPC/Cloud Token/OIDC Munich Quantum Software Stack

6.3 Additional Features

HIQ v1.0 extends beyond the basic HAL Contract with several productivity features:

Quantum Types (hiq-types): Qrisp-inspired high-level types including QuantumInt, QuantumFloat,
and QuantumArray for easier algorithm development

Automatic Uncomputation (hiq-auto): Framework for automatically uncomputing ancilla qubits

through gate inversion

HPC Schedulers (hiq-sched): Native support for both SLURM and PBS/Torque job schedulers with

workflow orchestration

LUMI Hybrid Demo: Complete VQE workflow example for quantum-HPC hybrid computing on LUMI

6.4 Usage Example

use hiq_hal::Backend;
use hiq_ir::Circuit;

// Same code works with any backend
async fn run_bell_state(backend: &impl Backend) -> Result<()> {
 let circuit = Circuit::bell();

 let caps = backend.capabilities().await?;
 println!("Running on {} ({} qubits)", caps.name, caps.num_qubits);

 let job_id = backend.submit(&circuit, 1000).await?;
 let result = backend.wait(&job_id).await?;

 println!("Results: {:?}", result.counts);
 Ok(())
}

// Switch backends with one line
let sim = SimulatorBackend::new();
run_bell_state(&sim).await?;

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 15/20

let iqm = IqmBackend::from_env()?;
run_bell_state(&iqm).await?;

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 16/20

7. Benefits & Trade-offs

7.1 Benefits

Hardware Independence. Algorithms developed against the HAL Contract run on any compliant
backend. This protects investments in quantum software development.

Simplified Testing. Develop and test against local simulators, then deploy to real hardware without code

changes. CI/CD pipelines become straightforward.

Multi-Backend Execution. Run the same workload on multiple backends to compare results, benchmark
performance, or implement redundancy.

HPC Integration. First-class support for SLURM and PBS means quantum workloads integrate naturally

into existing HPC workflows.

Future-Proofing. As new quantum hardware becomes available, adding support requires only
implementing the adapter—existing applications work immediately.

7.2 Trade-offs

Lowest Common Denominator. The contract exposes only capabilities shared across backends.
Advanced vendor-specific features require extension points or direct API access.

Abstraction Overhead. A thin abstraction layer adds minimal overhead, but high-frequency operations

may notice the additional indirection.

Version Coordination. As the contract evolves, backends must update their implementations. Clear
versioning mitigates but doesn't eliminate this coordination cost.

7.3 When to Use HAL

Use the HAL Contract when:

You need to support multiple quantum backends

You want to test locally and deploy to hardware

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 17/20

You're building quantum software for HPC environments

You want to avoid vendor lock-in

Consider direct API access when:

You need vendor-specific advanced features

You're optimizing for a single backend

You're building low-level tooling

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 18/20

8. Conclusion

The quantum computing industry stands at a crossroads. As hardware matures and production
deployments increase, the cost of fragmentation will only grow. The HAL Contract offers a path forward—

a minimal, stable interface that enables portability without sacrificing flexibility.

We have presented:

The fragmentation problem facing quantum computing today

The HAL Contract specification with six core interfaces

Implementation guidelines for backend developers

HIQ as a reference implementation demonstrating practical applicability

The HAL Contract is an open specification. We invite quantum hardware vendors, SDK developers, and

the research community to adopt, implement, and contribute to its evolution.

8.1 Getting Started

Website: hal-contract.org

Reference Implementation: github.com/hiq-lab/HIQ

Specification: hiq-hal crate

8.2 Call to Action

If you're a quantum hardware vendor, consider implementing the HAL Contract for your platform. If

you're a researcher or developer, consider building against the contract to future-proof your work.
Together, we can create an interoperable quantum computing ecosystem.

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 19/20

https://hal-contract.org/
https://github.com/hiq-lab/HIQ
https://github.com/hiq-lab/HIQ/tree/main/crates/hiq-hal

References

1. Qiskit: An Open-source Framework for Quantum Computing. qiskit.org

2. Cirq: A Python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum
(NISQ) circuits. quantumai.google/cirq

3. OpenQASM 3.0 Specification. openqasm.com

4. IQM Resonance API Documentation. meetiqm.com

5. XACC: eXtreme-scale ACCelerator programming framework. github.com/eclipse/xacc

6. QDMI: Quantum Device Management Interface (Munich Quantum Software Stack).
github.com/Munich-Quantum-Software-Stack/QDMI

7. Qrisp: High-level quantum programming language. qrisp.eu

8. HIQ: Rust-Native Quantum Compilation Stack. github.com/hiq-lab/HIQ

© 2026 Daniel Hinderink. This whitepaper is released under CC BY 4.0.

hal-contract.org

05.02.26, 11:12 HAL & HIQ - Hardware Abstraction Layer for Quantum Computing

localhost:8000/whitepaper.html 20/20

https://qiskit.org/
https://quantumai.google/cirq
https://openqasm.com/
https://www.meetiqm.com/
https://github.com/eclipse/xacc
https://github.com/Munich-Quantum-Software-Stack/QDMI
https://qrisp.eu/
https://github.com/hiq-lab/HIQ
https://hal-contract.org/

